Line data Source code
1 : //********************************************************************************
2 : // SPDX-License-Identifier: Apache-2.0
3 : // Copyright 2020 Western Digital Corporation or its affiliates.
4 : //
5 : // Licensed under the Apache License, Version 2.0 (the "License");
6 : // you may not use this file except in compliance with the License.
7 : // You may obtain a copy of the License at
8 : //
9 : // http://www.apache.org/licenses/LICENSE-2.0
10 : //
11 : // Unless required by applicable law or agreed to in writing, software
12 : // distributed under the License is distributed on an "AS IS" BASIS,
13 : // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 : // See the License for the specific language governing permissions and
15 : // limitations under the License.
16 : //********************************************************************************
17 :
18 : //********************************************************************************
19 : // Function: Branch predictor
20 : // Comments:
21 : //
22 : //
23 : // Bank3 : Bank2 : Bank1 : Bank0
24 : // FA C 8 4 0
25 : //********************************************************************************
26 :
27 : module el2_ifu_bp_ctl
28 : import el2_pkg::*;
29 : #(
30 : `include "el2_param.vh"
31 : )
32 : (
33 :
34 69890155 : input logic clk,
35 338 : input logic rst_l,
36 :
37 6789925 : input logic ic_hit_f, // Icache hit, enables F address capture
38 :
39 444 : input logic [31:1] ifc_fetch_addr_f, // look up btb address
40 3717922 : input logic ifc_fetch_req_f, // F1 valid
41 :
42 782419 : input el2_br_tlu_pkt_t dec_tlu_br0_r_pkt, // BP commit update packet, includes errors
43 367244 : input logic [pt.BHT_GHR_SIZE-1:0] exu_i0_br_fghr_r, // fghr to bp
44 187591 : input logic [pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] exu_i0_br_index_r, // bp index
45 :
46 0 : input logic [$clog2(pt.BTB_SIZE)-1:0] dec_fa_error_index, // Fully associative btb error index
47 :
48 59238 : input logic dec_tlu_flush_lower_wb, // used to move EX4 RS to EX1 and F
49 0 : input logic dec_tlu_flush_leak_one_wb, // don't hit for leak one fetches
50 :
51 0 : input logic dec_tlu_bpred_disable, // disable all branch prediction
52 :
53 34482 : input el2_predict_pkt_t exu_mp_pkt, // mispredict packet
54 :
55 300192 : input logic [pt.BHT_GHR_SIZE-1:0] exu_mp_eghr, // execute ghr (for patching fghr)
56 379120 : input logic [pt.BHT_GHR_SIZE-1:0] exu_mp_fghr, // Mispredict fghr
57 196224 : input logic [pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] exu_mp_index, // Mispredict index
58 115620 : input logic [pt.BTB_BTAG_SIZE-1:0] exu_mp_btag, // Mispredict btag
59 :
60 674202 : input logic exu_flush_final, // all flushes
61 :
62 3171757 : output logic ifu_bp_hit_taken_f, // btb hit, select target
63 518791 : output logic [31:1] ifu_bp_btb_target_f, // predicted target PC
64 2405225 : output logic ifu_bp_inst_mask_f, // tell ic which valids to kill because of a taken branch, right justified
65 :
66 376935 : output logic [pt.BHT_GHR_SIZE-1:0] ifu_bp_fghr_f, // fetch ghr
67 :
68 2375527 : output logic [1:0] ifu_bp_way_f, // way
69 70466 : output logic [1:0] ifu_bp_ret_f, // predicted ret
70 2025808 : output logic [1:0] ifu_bp_hist1_f, // history counters for all 4 potential branches, bit 1, right justified
71 1824638 : output logic [1:0] ifu_bp_hist0_f, // history counters for all 4 potential branches, bit 0, right justified
72 408833 : output logic [1:0] ifu_bp_pc4_f, // pc4 indication, right justified
73 957477 : output logic [1:0] ifu_bp_valid_f, // branch valid, right justified
74 2177331 : output logic [11:0] ifu_bp_poffset_f, // predicted target
75 :
76 0 : output logic [1:0] [$clog2(pt.BTB_SIZE)-1:0] ifu_bp_fa_index_f, // predicted branch index (fully associative option)
77 :
78 0 : input logic scan_mode
79 : );
80 :
81 :
82 : localparam BTB_DWIDTH = pt.BTB_TOFFSET_SIZE+pt.BTB_BTAG_SIZE+5;
83 : localparam BTB_DWIDTH_TOP = int'(pt.BTB_TOFFSET_SIZE)+int'(pt.BTB_BTAG_SIZE)+4;
84 : localparam BTB_FA_INDEX = $clog2(pt.BTB_SIZE)-1;
85 : localparam FA_CMP_LOWER = $clog2(pt.ICACHE_LN_SZ);
86 : localparam FA_TAG_END_UPPER= 5+int'(pt.BTB_TOFFSET_SIZE)+int'(FA_CMP_LOWER)-1; // must cast to int or vcs build fails
87 : localparam FA_TAG_START_LOWER = 3+int'(pt.BTB_TOFFSET_SIZE)+int'(FA_CMP_LOWER);
88 : localparam FA_TAG_END_LOWER = 5+int'(pt.BTB_TOFFSET_SIZE);
89 :
90 : localparam TAG_START=BTB_DWIDTH-1;
91 : localparam PC4=4;
92 : localparam BOFF=3;
93 : localparam CALL=2;
94 : localparam RET=1;
95 : localparam BV=0;
96 :
97 : localparam LRU_SIZE=pt.BTB_ARRAY_DEPTH;
98 : localparam NUM_BHT_LOOP = (pt.BHT_ARRAY_DEPTH > 16 ) ? 16 : pt.BHT_ARRAY_DEPTH;
99 : localparam NUM_BHT_LOOP_INNER_HI = (pt.BHT_ARRAY_DEPTH > 16 ) ?pt.BHT_ADDR_LO+3 : pt.BHT_ADDR_HI;
100 : localparam NUM_BHT_LOOP_OUTER_LO = (pt.BHT_ARRAY_DEPTH > 16 ) ?pt.BHT_ADDR_LO+4 : pt.BHT_ADDR_LO;
101 : localparam BHT_NO_ADDR_MATCH = ( pt.BHT_ARRAY_DEPTH <= 16 );
102 :
103 :
104 200610 : logic exu_mp_valid_write;
105 523560 : logic exu_mp_ataken;
106 508970 : logic exu_mp_valid; // conditional branch mispredict
107 230336 : logic exu_mp_boffset; // branch offsett
108 273420 : logic exu_mp_pc4; // branch is a 4B inst
109 47310 : logic exu_mp_call; // branch is a call inst
110 149094 : logic exu_mp_ret; // branch is a ret inst
111 80332 : logic exu_mp_ja; // branch is a jump always
112 283388 : logic [1:0] exu_mp_hist; // new history
113 90330 : logic [11:0] exu_mp_tgt; // target offset
114 196224 : logic [pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] exu_mp_addr; // BTB/BHT address
115 2914516 : logic dec_tlu_br0_v_wb; // WB stage history update
116 2722695 : logic [1:0] dec_tlu_br0_hist_wb; // new history
117 187591 : logic [pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] dec_tlu_br0_addr_wb; // addr
118 28846 : logic dec_tlu_br0_error_wb; // error; invalidate bank
119 9608 : logic dec_tlu_br0_start_error_wb; // error; invalidate all 4 banks in fg
120 367244 : logic [pt.BHT_GHR_SIZE-1:0] exu_i0_br_fghr_wb;
121 :
122 5008 : logic use_mp_way, use_mp_way_p1;
123 128 : logic [pt.RET_STACK_SIZE-1:0][31:0] rets_out, rets_in;
124 230738 : logic [pt.RET_STACK_SIZE-1:0] rsenable;
125 :
126 :
127 2177331 : logic [11:0] btb_rd_tgt_f;
128 498218 : logic btb_rd_pc4_f, btb_rd_call_f, btb_rd_ret_f;
129 1444556 : logic [1:1] bp_total_branch_offset_f;
130 :
131 446 : logic [31:1] bp_btb_target_adder_f;
132 446 : logic [31:1] bp_rs_call_target_f;
133 203102 : logic rs_push, rs_pop, rs_hold;
134 126343 : logic [pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] btb_rd_addr_p1_f, btb_wr_addr, btb_rd_addr_f;
135 12203 : logic [pt.BTB_BTAG_SIZE-1:0] btb_wr_tag, fetch_rd_tag_f, fetch_rd_tag_p1_f;
136 56058 : logic [BTB_DWIDTH-1:0] btb_wr_data;
137 101184 : logic btb_wr_en_way0, btb_wr_en_way1;
138 :
139 :
140 261365 : logic dec_tlu_error_wb, btb_valid, dec_tlu_br0_middle_wb;
141 187591 : logic [pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] btb_error_addr_wb;
142 2468 : logic branch_error_collision_f, fetch_mp_collision_f, branch_error_collision_p1_f, fetch_mp_collision_p1_f;
143 :
144 1040 : logic branch_error_bank_conflict_f;
145 373123 : logic [pt.BHT_GHR_SIZE-1:0] merged_ghr, fghr_ns, fghr;
146 74755 : logic [1:0] num_valids;
147 232 : logic [LRU_SIZE-1:0] btb_lru_b0_f, btb_lru_b0_hold, btb_lru_b0_ns,
148 15530 : fetch_wrindex_dec, fetch_wrindex_p1_dec, fetch_wrlru_b0, fetch_wrlru_p1_b0,
149 366 : mp_wrindex_dec, mp_wrlru_b0;
150 1643851 : logic btb_lru_rd_f, btb_lru_rd_p1_f, lru_update_valid_f;
151 539542 : logic tag_match_way0_f, tag_match_way1_f;
152 755742 : logic [1:0] way_raw, bht_dir_f, btb_sel_f, wayhit_f, vwayhit_f, wayhit_p1_f;
153 361416 : logic [1:0] bht_valid_f, bht_force_taken_f;
154 :
155 0 : logic leak_one_f, leak_one_f_d1;
156 :
157 : logic [LRU_SIZE-1:0][BTB_DWIDTH-1:0] btb_bank0_rd_data_way0_out ;
158 :
159 : logic [LRU_SIZE-1:0][BTB_DWIDTH-1:0] btb_bank0_rd_data_way1_out ;
160 :
161 2668982 : logic [BTB_DWIDTH-1:0] btb_bank0_rd_data_way0_f ;
162 461797 : logic [BTB_DWIDTH-1:0] btb_bank0_rd_data_way1_f ;
163 :
164 1085126 : logic [BTB_DWIDTH-1:0] btb_bank0_rd_data_way0_p1_f ;
165 459058 : logic [BTB_DWIDTH-1:0] btb_bank0_rd_data_way1_p1_f ;
166 :
167 278385 : logic [BTB_DWIDTH-1:0] btb_vbank0_rd_data_f, btb_vbank1_rd_data_f;
168 :
169 3171757 : logic final_h;
170 183506 : logic btb_fg_crossing_f;
171 284964 : logic middle_of_bank;
172 :
173 :
174 1782553 : logic [1:0] bht_vbank0_rd_data_f, bht_vbank1_rd_data_f;
175 982 : logic branch_error_bank_conflict_p1_f;
176 595704 : logic tag_match_way0_p1_f, tag_match_way1_p1_f;
177 :
178 162873 : logic [1:0] btb_vlru_rd_f, fetch_start_f, tag_match_vway1_expanded_f, tag_match_way0_expanded_p1_f, tag_match_way1_expanded_p1_f;
179 446 : logic [31:2] fetch_addr_p1_f;
180 :
181 :
182 204706 : logic exu_mp_way, exu_mp_way_f, dec_tlu_br0_way_wb, dec_tlu_way_wb;
183 179784 : logic [BTB_DWIDTH-1:0] btb_bank0e_rd_data_f, btb_bank0e_rd_data_p1_f;
184 :
185 1809009 : logic [BTB_DWIDTH-1:0] btb_bank0o_rd_data_f;
186 :
187 196713 : logic [1:0] tag_match_way0_expanded_f, tag_match_way1_expanded_f;
188 :
189 :
190 1711067 : logic [1:0] bht_bank0_rd_data_f;
191 1959832 : logic [1:0] bht_bank1_rd_data_f;
192 1804447 : logic [1:0] bht_bank0_rd_data_p1_f;
193 : genvar j, i;
194 :
195 : assign exu_mp_valid = exu_mp_pkt.misp & ~leak_one_f; // conditional branch mispredict
196 : assign exu_mp_boffset = exu_mp_pkt.boffset; // branch offset
197 : assign exu_mp_pc4 = exu_mp_pkt.pc4; // branch is a 4B inst
198 : assign exu_mp_call = exu_mp_pkt.pcall; // branch is a call inst
199 : assign exu_mp_ret = exu_mp_pkt.pret; // branch is a ret inst
200 : assign exu_mp_ja = exu_mp_pkt.pja; // branch is a jump always
201 : assign exu_mp_way = exu_mp_pkt.way; // repl way
202 : assign exu_mp_hist[1:0] = exu_mp_pkt.hist[1:0]; // new history
203 : assign exu_mp_tgt[11:0] = exu_mp_pkt.toffset[11:0] ; // target offset
204 : assign exu_mp_addr[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] = exu_mp_index[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] ; // BTB/BHT address
205 : assign exu_mp_ataken = exu_mp_pkt.ataken;
206 :
207 :
208 : assign dec_tlu_br0_v_wb = dec_tlu_br0_r_pkt.valid;
209 : assign dec_tlu_br0_hist_wb[1:0] = dec_tlu_br0_r_pkt.hist[1:0];
210 : assign dec_tlu_br0_addr_wb[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] = exu_i0_br_index_r[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO];
211 : assign dec_tlu_br0_error_wb = dec_tlu_br0_r_pkt.br_error;
212 : assign dec_tlu_br0_middle_wb = dec_tlu_br0_r_pkt.middle;
213 : assign dec_tlu_br0_way_wb = dec_tlu_br0_r_pkt.way;
214 : assign dec_tlu_br0_start_error_wb = dec_tlu_br0_r_pkt.br_start_error;
215 : assign exu_i0_br_fghr_wb[pt.BHT_GHR_SIZE-1:0] = exu_i0_br_fghr_r[pt.BHT_GHR_SIZE-1:0];
216 :
217 :
218 :
219 :
220 : // ----------------------------------------------------------------------
221 : // READ
222 : // ----------------------------------------------------------------------
223 :
224 : // hash the incoming fetch PC, first guess at hashing algorithm
225 : el2_btb_addr_hash #(.pt(pt)) f1hash(.pc(ifc_fetch_addr_f[pt.BTB_INDEX3_HI:pt.BTB_INDEX1_LO]), .hash(btb_rd_addr_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO]));
226 :
227 :
228 : assign fetch_addr_p1_f[31:2] = ifc_fetch_addr_f[31:2] + 30'b1;
229 : el2_btb_addr_hash #(.pt(pt)) f1hash_p1(.pc(fetch_addr_p1_f[pt.BTB_INDEX3_HI:pt.BTB_INDEX1_LO]), .hash(btb_rd_addr_p1_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO]));
230 :
231 : assign btb_sel_f[1] = ~bht_dir_f[0];
232 : assign btb_sel_f[0] = bht_dir_f[0];
233 :
234 : assign fetch_start_f[1:0] = {ifc_fetch_addr_f[1], ~ifc_fetch_addr_f[1]};
235 :
236 : // Errors colliding with fetches must kill the btb/bht hit.
237 :
238 : assign branch_error_collision_f = dec_tlu_error_wb & (btb_error_addr_wb[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] == btb_rd_addr_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO]);
239 : assign branch_error_collision_p1_f = dec_tlu_error_wb & (btb_error_addr_wb[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] == btb_rd_addr_p1_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO]);
240 :
241 : assign branch_error_bank_conflict_f = branch_error_collision_f & dec_tlu_error_wb;
242 : assign branch_error_bank_conflict_p1_f = branch_error_collision_p1_f & dec_tlu_error_wb;
243 :
244 : // set on leak one, hold until next flush without leak one
245 : assign leak_one_f = (dec_tlu_flush_leak_one_wb & dec_tlu_flush_lower_wb) | (leak_one_f_d1 & ~dec_tlu_flush_lower_wb);
246 :
247 674202 : logic exu_flush_final_d1;
248 :
249 : if(!pt.BTB_FULLYA) begin : genblock1
250 : assign fetch_mp_collision_f = ( (exu_mp_btag[pt.BTB_BTAG_SIZE-1:0] == fetch_rd_tag_f[pt.BTB_BTAG_SIZE-1:0]) &
251 : exu_mp_valid & ifc_fetch_req_f &
252 : (exu_mp_addr[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] == btb_rd_addr_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO])
253 : );
254 : assign fetch_mp_collision_p1_f = ( (exu_mp_btag[pt.BTB_BTAG_SIZE-1:0] == fetch_rd_tag_p1_f[pt.BTB_BTAG_SIZE-1:0]) &
255 : exu_mp_valid & ifc_fetch_req_f &
256 : (exu_mp_addr[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] == btb_rd_addr_p1_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO])
257 : );
258 : // 2 -way SA, figure out the way hit and mux accordingly
259 : assign tag_match_way0_f = btb_bank0_rd_data_way0_f[BV] & (btb_bank0_rd_data_way0_f[TAG_START:17] == fetch_rd_tag_f[pt.BTB_BTAG_SIZE-1:0]) &
260 : ~(dec_tlu_way_wb & branch_error_bank_conflict_f) & ifc_fetch_req_f & ~leak_one_f;
261 :
262 : assign tag_match_way1_f = btb_bank0_rd_data_way1_f[BV] & (btb_bank0_rd_data_way1_f[TAG_START:17] == fetch_rd_tag_f[pt.BTB_BTAG_SIZE-1:0]) &
263 : ~(dec_tlu_way_wb & branch_error_bank_conflict_f) & ifc_fetch_req_f & ~leak_one_f;
264 :
265 : assign tag_match_way0_p1_f = btb_bank0_rd_data_way0_p1_f[BV] & (btb_bank0_rd_data_way0_p1_f[TAG_START:17] == fetch_rd_tag_p1_f[pt.BTB_BTAG_SIZE-1:0]) &
266 : ~(dec_tlu_way_wb & branch_error_bank_conflict_p1_f) & ifc_fetch_req_f & ~leak_one_f;
267 :
268 : assign tag_match_way1_p1_f = btb_bank0_rd_data_way1_p1_f[BV] & (btb_bank0_rd_data_way1_p1_f[TAG_START:17] == fetch_rd_tag_p1_f[pt.BTB_BTAG_SIZE-1:0]) &
269 : ~(dec_tlu_way_wb & branch_error_bank_conflict_p1_f) & ifc_fetch_req_f & ~leak_one_f;
270 :
271 :
272 : // Both ways could hit, use the offset bit to reorder
273 :
274 : assign tag_match_way0_expanded_f[1:0] = {tag_match_way0_f & (btb_bank0_rd_data_way0_f[BOFF] ^ btb_bank0_rd_data_way0_f[PC4]),
275 : tag_match_way0_f & ~(btb_bank0_rd_data_way0_f[BOFF] ^ btb_bank0_rd_data_way0_f[PC4])};
276 :
277 : assign tag_match_way1_expanded_f[1:0] = {tag_match_way1_f & (btb_bank0_rd_data_way1_f[BOFF] ^ btb_bank0_rd_data_way1_f[PC4]),
278 : tag_match_way1_f & ~(btb_bank0_rd_data_way1_f[BOFF] ^ btb_bank0_rd_data_way1_f[PC4])};
279 :
280 : assign tag_match_way0_expanded_p1_f[1:0] = {tag_match_way0_p1_f & (btb_bank0_rd_data_way0_p1_f[BOFF] ^ btb_bank0_rd_data_way0_p1_f[PC4]),
281 : tag_match_way0_p1_f & ~(btb_bank0_rd_data_way0_p1_f[BOFF] ^ btb_bank0_rd_data_way0_p1_f[PC4])};
282 :
283 : assign tag_match_way1_expanded_p1_f[1:0] = {tag_match_way1_p1_f & (btb_bank0_rd_data_way1_p1_f[BOFF] ^ btb_bank0_rd_data_way1_p1_f[PC4]),
284 : tag_match_way1_p1_f & ~(btb_bank0_rd_data_way1_p1_f[BOFF] ^ btb_bank0_rd_data_way1_p1_f[PC4])};
285 :
286 : assign wayhit_f[1:0] = tag_match_way0_expanded_f[1:0] | tag_match_way1_expanded_f[1:0];
287 : assign wayhit_p1_f[1:0] = tag_match_way0_expanded_p1_f[1:0] | tag_match_way1_expanded_p1_f[1:0];
288 :
289 : assign btb_bank0o_rd_data_f[BTB_DWIDTH-1:0] = ( ({17+pt.BTB_BTAG_SIZE{tag_match_way0_expanded_f[1]}} & btb_bank0_rd_data_way0_f[BTB_DWIDTH-1:0]) |
290 : ({17+pt.BTB_BTAG_SIZE{tag_match_way1_expanded_f[1]}} & btb_bank0_rd_data_way1_f[BTB_DWIDTH-1:0]) );
291 : assign btb_bank0e_rd_data_f[BTB_DWIDTH-1:0] = ( ({17+pt.BTB_BTAG_SIZE{tag_match_way0_expanded_f[0]}} & btb_bank0_rd_data_way0_f[BTB_DWIDTH-1:0]) |
292 : ({17+pt.BTB_BTAG_SIZE{tag_match_way1_expanded_f[0]}} & btb_bank0_rd_data_way1_f[BTB_DWIDTH-1:0]) );
293 :
294 : assign btb_bank0e_rd_data_p1_f[BTB_DWIDTH-1:0] = ( ({17+pt.BTB_BTAG_SIZE{tag_match_way0_expanded_p1_f[0]}} & btb_bank0_rd_data_way0_p1_f[BTB_DWIDTH-1:0]) |
295 : ({17+pt.BTB_BTAG_SIZE{tag_match_way1_expanded_p1_f[0]}} & btb_bank0_rd_data_way1_p1_f[BTB_DWIDTH-1:0]) );
296 :
297 : // virtual bank order
298 :
299 : assign btb_vbank0_rd_data_f[BTB_DWIDTH-1:0] = ( ({17+pt.BTB_BTAG_SIZE{fetch_start_f[0]}} & btb_bank0e_rd_data_f[BTB_DWIDTH-1:0]) |
300 : ({17+pt.BTB_BTAG_SIZE{fetch_start_f[1]}} & btb_bank0o_rd_data_f[BTB_DWIDTH-1:0]) );
301 : assign btb_vbank1_rd_data_f[BTB_DWIDTH-1:0] = ( ({17+pt.BTB_BTAG_SIZE{fetch_start_f[0]}} & btb_bank0o_rd_data_f[BTB_DWIDTH-1:0]) |
302 : ({17+pt.BTB_BTAG_SIZE{fetch_start_f[1]}} & btb_bank0e_rd_data_p1_f[BTB_DWIDTH-1:0]) );
303 :
304 : assign way_raw[1:0] = tag_match_vway1_expanded_f[1:0] | (~vwayhit_f[1:0] & btb_vlru_rd_f[1:0]);
305 :
306 : // --------------------------------------------------------------------------------
307 : // --------------------------------------------------------------------------------
308 : // update lru
309 : // mp
310 :
311 : // create a onehot lru write vector
312 : assign mp_wrindex_dec[LRU_SIZE-1:0] = {{LRU_SIZE-1{1'b0}},1'b1} << exu_mp_addr[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO];
313 :
314 : // fetch
315 : assign fetch_wrindex_dec[LRU_SIZE-1:0] = {{LRU_SIZE-1{1'b0}},1'b1} << btb_rd_addr_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO];
316 : assign fetch_wrindex_p1_dec[LRU_SIZE-1:0] = {{LRU_SIZE-1{1'b0}},1'b1} << btb_rd_addr_p1_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO];
317 :
318 : assign mp_wrlru_b0[LRU_SIZE-1:0] = mp_wrindex_dec[LRU_SIZE-1:0] & {LRU_SIZE{exu_mp_valid}};
319 :
320 :
321 : assign btb_lru_b0_hold[LRU_SIZE-1:0] = ~mp_wrlru_b0[LRU_SIZE-1:0] & ~fetch_wrlru_b0[LRU_SIZE-1:0];
322 :
323 : // Forward the mp lru information to the fetch, avoids multiple way hits later
324 : assign use_mp_way = fetch_mp_collision_f;
325 : assign use_mp_way_p1 = fetch_mp_collision_p1_f;
326 :
327 : assign lru_update_valid_f = (vwayhit_f[0] | vwayhit_f[1]) & ifc_fetch_req_f & ~leak_one_f;
328 :
329 :
330 : assign fetch_wrlru_b0[LRU_SIZE-1:0] = fetch_wrindex_dec[LRU_SIZE-1:0] &
331 : {LRU_SIZE{lru_update_valid_f}};
332 : assign fetch_wrlru_p1_b0[LRU_SIZE-1:0] = fetch_wrindex_p1_dec[LRU_SIZE-1:0] &
333 : {LRU_SIZE{lru_update_valid_f}};
334 :
335 : assign btb_lru_b0_ns[LRU_SIZE-1:0] = ( (btb_lru_b0_hold[LRU_SIZE-1:0] & btb_lru_b0_f[LRU_SIZE-1:0]) |
336 : (mp_wrlru_b0[LRU_SIZE-1:0] & {LRU_SIZE{~exu_mp_way}}) |
337 : (fetch_wrlru_b0[LRU_SIZE-1:0] & {LRU_SIZE{tag_match_way0_f}}) |
338 : (fetch_wrlru_p1_b0[LRU_SIZE-1:0] & {LRU_SIZE{tag_match_way0_p1_f}}) );
339 :
340 :
341 :
342 : assign btb_lru_rd_f = use_mp_way ? exu_mp_way_f : |(fetch_wrindex_dec[LRU_SIZE-1:0] & btb_lru_b0_f[LRU_SIZE-1:0]);
343 :
344 : assign btb_lru_rd_p1_f = use_mp_way_p1 ? exu_mp_way_f : |(fetch_wrindex_p1_dec[LRU_SIZE-1:0] & btb_lru_b0_f[LRU_SIZE-1:0]);
345 :
346 : // rotated
347 : assign btb_vlru_rd_f[1:0] = ( ({2{fetch_start_f[0]}} & {btb_lru_rd_f, btb_lru_rd_f}) |
348 : ({2{fetch_start_f[1]}} & {btb_lru_rd_p1_f, btb_lru_rd_f}));
349 :
350 : assign tag_match_vway1_expanded_f[1:0] = ( ({2{fetch_start_f[0]}} & {tag_match_way1_expanded_f[1:0]}) |
351 : ({2{fetch_start_f[1]}} & {tag_match_way1_expanded_p1_f[0], tag_match_way1_expanded_f[1]}) );
352 :
353 :
354 : rvdffe #(LRU_SIZE) btb_lru_ff (.*, .en(ifc_fetch_req_f | exu_mp_valid),
355 : .din(btb_lru_b0_ns[(LRU_SIZE)-1:0]),
356 : .dout(btb_lru_b0_f[(LRU_SIZE)-1:0]));
357 :
358 : end // if (!pt.BTB_FULLYA)
359 : // Detect end of cache line and mask as needed
360 753630 : logic eoc_near;
361 201286 : logic eoc_mask;
362 : assign eoc_near = &ifc_fetch_addr_f[pt.ICACHE_BEAT_ADDR_HI:3];
363 : assign eoc_mask = ~eoc_near| (|(~ifc_fetch_addr_f[2:1]));
364 :
365 :
366 :
367 : // --------------------------------------------------------------------------------
368 : // --------------------------------------------------------------------------------
369 :
370 : // mux out critical hit bank for pc computation
371 : // This is only useful for the first taken branch in the fetch group
372 1992484 : logic [16:1] btb_sel_data_f;
373 :
374 : assign btb_rd_tgt_f[11:0] = btb_sel_data_f[16:5];
375 : assign btb_rd_pc4_f = btb_sel_data_f[4];
376 : assign btb_rd_call_f = btb_sel_data_f[2];
377 : assign btb_rd_ret_f = btb_sel_data_f[1];
378 :
379 : assign btb_sel_data_f[16:1] = ( ({16{btb_sel_f[1]}} & btb_vbank1_rd_data_f[16:1]) |
380 : ({16{btb_sel_f[0]}} & btb_vbank0_rd_data_f[16:1]) );
381 :
382 :
383 70466 : logic [1:0] hist0_raw, hist1_raw, pc4_raw, pret_raw;
384 :
385 : // a valid taken target needs to kill the next fetch as we compute the target address
386 : assign ifu_bp_hit_taken_f = |(vwayhit_f[1:0] & hist1_raw[1:0]) & ifc_fetch_req_f & ~leak_one_f_d1 & ~dec_tlu_bpred_disable;
387 :
388 :
389 : // Don't put calls/rets/ja in the predictor, force the bht taken instead
390 : assign bht_force_taken_f[1:0] = {(btb_vbank1_rd_data_f[CALL] | btb_vbank1_rd_data_f[RET]),
391 : (btb_vbank0_rd_data_f[CALL] | btb_vbank0_rd_data_f[RET])};
392 :
393 :
394 : // taken and valid, otherwise, branch errors must clear the bht
395 : assign bht_valid_f[1:0] = vwayhit_f[1:0];
396 :
397 : assign bht_vbank0_rd_data_f[1:0] = ( ({2{fetch_start_f[0]}} & bht_bank0_rd_data_f[1:0]) |
398 : ({2{fetch_start_f[1]}} & bht_bank1_rd_data_f[1:0]) );
399 :
400 : assign bht_vbank1_rd_data_f[1:0] = ( ({2{fetch_start_f[0]}} & bht_bank1_rd_data_f[1:0]) |
401 : ({2{fetch_start_f[1]}} & bht_bank0_rd_data_p1_f[1:0]) );
402 :
403 :
404 : assign bht_dir_f[1:0] = {(bht_force_taken_f[1] | bht_vbank1_rd_data_f[1]) & bht_valid_f[1],
405 : (bht_force_taken_f[0] | bht_vbank0_rd_data_f[1]) & bht_valid_f[0]};
406 :
407 : assign ifu_bp_inst_mask_f = (ifu_bp_hit_taken_f & btb_sel_f[1]) | ~ifu_bp_hit_taken_f;
408 :
409 :
410 :
411 :
412 : // Branch prediction info is sent with the 2byte lane associated with the end of the branch.
413 : // Cases
414 : // BANK1 BANK0
415 : // -------------------------------
416 : // | : | : |
417 : // -------------------------------
418 : // <------------> : PC4 branch, offset, should be in B1 (indicated on [2])
419 : // <------------> : PC4 branch, no offset, indicate PC4, VALID, HIST on [1]
420 : // <------------> : PC4 branch, offset, indicate PC4, VALID, HIST on [0]
421 : // <------> : PC2 branch, offset, indicate VALID, HIST on [1]
422 : // <------> : PC2 branch, no offset, indicate VALID, HIST on [0]
423 : //
424 :
425 :
426 :
427 : assign hist1_raw[1:0] = bht_force_taken_f[1:0] | {bht_vbank1_rd_data_f[1],
428 : bht_vbank0_rd_data_f[1]};
429 :
430 : assign hist0_raw[1:0] = {bht_vbank1_rd_data_f[0],
431 : bht_vbank0_rd_data_f[0]};
432 :
433 :
434 : assign pc4_raw[1:0] = {vwayhit_f[1] & btb_vbank1_rd_data_f[PC4],
435 : vwayhit_f[0] & btb_vbank0_rd_data_f[PC4]};
436 :
437 : assign pret_raw[1:0] = {vwayhit_f[1] & ~btb_vbank1_rd_data_f[CALL] & btb_vbank1_rd_data_f[RET],
438 : vwayhit_f[0] & ~btb_vbank0_rd_data_f[CALL] & btb_vbank0_rd_data_f[RET]};
439 :
440 : // GHR
441 :
442 :
443 : // count the valids with masking based on first taken
444 : assign num_valids[1:0] = countones(bht_valid_f[1:0]);
445 :
446 : // Note that the following property holds
447 : // P: prior ghr, H: history bit of last valid branch in line (could be 1 or 0)
448 : // Num valid branches What new GHR must be
449 : // 2 0H
450 : // 1 PH
451 : // 0 PP
452 :
453 : assign final_h = |(btb_sel_f[1:0] & bht_dir_f[1:0]);
454 :
455 : assign merged_ghr[pt.BHT_GHR_SIZE-1:0] = (
456 : ({pt.BHT_GHR_SIZE{num_valids[1:0] == 2'h2}} & {fghr[pt.BHT_GHR_SIZE-3:0], 1'b0, final_h}) | // 0H
457 : ({pt.BHT_GHR_SIZE{num_valids[1:0] == 2'h1}} & {fghr[pt.BHT_GHR_SIZE-2:0], final_h}) | // PH
458 : ({pt.BHT_GHR_SIZE{num_valids[1:0] == 2'h0}} & {fghr[pt.BHT_GHR_SIZE-1:0]}) ); // PP
459 :
460 379120 : logic [pt.BHT_GHR_SIZE-1:0] exu_flush_ghr;
461 : assign exu_flush_ghr[pt.BHT_GHR_SIZE-1:0] = exu_mp_fghr[pt.BHT_GHR_SIZE-1:0];
462 :
463 : assign fghr_ns[pt.BHT_GHR_SIZE-1:0] = ( ({pt.BHT_GHR_SIZE{exu_flush_final_d1}} & exu_flush_ghr[pt.BHT_GHR_SIZE-1:0]) |
464 : ({pt.BHT_GHR_SIZE{~exu_flush_final_d1 & ifc_fetch_req_f & ic_hit_f & ~leak_one_f_d1}} & merged_ghr[pt.BHT_GHR_SIZE-1:0]) |
465 : ({pt.BHT_GHR_SIZE{~exu_flush_final_d1 & ~(ifc_fetch_req_f & ic_hit_f & ~leak_one_f_d1)}} & fghr[pt.BHT_GHR_SIZE-1:0]));
466 :
467 : rvdffie #(.WIDTH(pt.BHT_GHR_SIZE+3),.OVERRIDE(1)) fetchghr (.*,
468 : .din ({exu_flush_final, exu_mp_way, leak_one_f, fghr_ns[pt.BHT_GHR_SIZE-1:0]}),
469 : .dout({exu_flush_final_d1, exu_mp_way_f, leak_one_f_d1, fghr[pt.BHT_GHR_SIZE-1:0]}));
470 :
471 : assign ifu_bp_fghr_f[pt.BHT_GHR_SIZE-1:0] = fghr[pt.BHT_GHR_SIZE-1:0];
472 :
473 :
474 : assign ifu_bp_way_f[1:0] = way_raw[1:0];
475 : assign ifu_bp_hist1_f[1:0] = hist1_raw[1:0];
476 : assign ifu_bp_hist0_f[1:0] = hist0_raw[1:0];
477 : assign ifu_bp_pc4_f[1:0] = pc4_raw[1:0];
478 :
479 : assign ifu_bp_valid_f[1:0] = vwayhit_f[1:0] & ~{2{dec_tlu_bpred_disable}};
480 : assign ifu_bp_ret_f[1:0] = pret_raw[1:0];
481 :
482 :
483 : // compute target
484 : // Form the fetch group offset based on the btb hit location and the location of the branch within the 4 byte chunk
485 :
486 : // .i 5
487 : // .o 3
488 : // .ilb bht_dir_f[1] bht_dir_f[0] fetch_start_f[1] fetch_start_f[0] btb_rd_pc4_f
489 : // .ob bloc_f[1] bloc_f[0] use_fa_plus
490 : // .type fr
491 : //
492 : //
493 : // ## rotdir[1:0] fs pc4 off fapl
494 : // -1 01 - 01 0
495 : // 10 01 - 10 0
496 : //
497 : // -1 10 - 10 0
498 : // 10 10 0 01 1
499 : // 10 10 1 01 0
500 2583795 : logic [1:0] bloc_f;
501 2359714 : logic use_fa_plus;
502 : assign bloc_f[1] = (bht_dir_f[0] & ~fetch_start_f[0]) | (~bht_dir_f[0]
503 : & fetch_start_f[0]);
504 : assign bloc_f[0] = (bht_dir_f[0] & fetch_start_f[0]) | (~bht_dir_f[0]
505 : & ~fetch_start_f[0]);
506 : assign use_fa_plus = (~bht_dir_f[0] & ~fetch_start_f[0] & ~btb_rd_pc4_f);
507 :
508 :
509 :
510 :
511 : assign btb_fg_crossing_f = fetch_start_f[0] & btb_sel_f[0] & btb_rd_pc4_f;
512 :
513 : assign bp_total_branch_offset_f = bloc_f[1] ^ btb_rd_pc4_f;
514 :
515 341 : logic [31:2] adder_pc_in_f, ifc_fetch_adder_prior;
516 : rvdfflie #(.WIDTH(30), .LEFT(19)) faddrf_ff (.*, .en(ifc_fetch_req_f & ~ifu_bp_hit_taken_f & ic_hit_f), .din(ifc_fetch_addr_f[31:2]), .dout(ifc_fetch_adder_prior[31:2]));
517 :
518 :
519 : assign ifu_bp_poffset_f[11:0] = btb_rd_tgt_f[11:0];
520 :
521 : assign adder_pc_in_f[31:2] = ( ({30{ use_fa_plus}} & fetch_addr_p1_f[31:2]) |
522 : ({30{ btb_fg_crossing_f}} & ifc_fetch_adder_prior[31:2]) |
523 : ({30{~btb_fg_crossing_f & ~use_fa_plus}} & ifc_fetch_addr_f[31:2]));
524 :
525 : rvbradder predtgt_addr (.pc({adder_pc_in_f[31:2], bp_total_branch_offset_f}),
526 : .offset(btb_rd_tgt_f[11:0]),
527 : .dout(bp_btb_target_adder_f[31:1])
528 : );
529 : // mux in the return stack address here for a predicted return assuming the RS is valid, quite if no prediction
530 : assign ifu_bp_btb_target_f[31:1] = (({31{btb_rd_ret_f & ~btb_rd_call_f & rets_out[0][0] & ifu_bp_hit_taken_f}} & rets_out[0][31:1]) |
531 : ({31{~(btb_rd_ret_f & ~btb_rd_call_f & rets_out[0][0]) & ifu_bp_hit_taken_f}} & bp_btb_target_adder_f[31:1]) );
532 :
533 :
534 : // ----------------------------------------------------------------------
535 : // Return Stack
536 : // ----------------------------------------------------------------------
537 :
538 : rvbradder rs_addr (.pc({adder_pc_in_f[31:2], bp_total_branch_offset_f}),
539 : .offset({11'b0, ~btb_rd_pc4_f}),
540 : .dout(bp_rs_call_target_f[31:1])
541 : );
542 :
543 : assign rs_push = (btb_rd_call_f & ~btb_rd_ret_f & ifu_bp_hit_taken_f);
544 : assign rs_pop = (btb_rd_ret_f & ~btb_rd_call_f & ifu_bp_hit_taken_f);
545 : assign rs_hold = ~rs_push & ~rs_pop;
546 :
547 :
548 :
549 : // Fetch based (bit 0 is a valid)
550 : assign rets_in[0][31:0] = ( ({32{rs_push}} & {bp_rs_call_target_f[31:1], 1'b1}) | // target[31:1], valid
551 : ({32{rs_pop}} & rets_out[1][31:0]) );
552 :
553 : assign rsenable[0] = ~rs_hold;
554 :
555 : for (i=0; i<pt.RET_STACK_SIZE; i++) begin : retstack
556 :
557 : // for the last entry in the stack, we don't have a pop position
558 : if(i==pt.RET_STACK_SIZE-1) begin
559 : assign rets_in[i][31:0] = rets_out[i-1][31:0];
560 : assign rsenable[i] = rs_push;
561 : end
562 : else if(i>0) begin
563 : assign rets_in[i][31:0] = ( ({32{rs_push}} & rets_out[i-1][31:0]) |
564 : ({32{rs_pop}} & rets_out[i+1][31:0]) );
565 : assign rsenable[i] = rs_push | rs_pop;
566 : end
567 : rvdffe #(32) rets_ff (.*, .en(rsenable[i]), .din(rets_in[i][31:0]), .dout(rets_out[i][31:0]));
568 :
569 : end : retstack
570 :
571 : // ----------------------------------------------------------------------
572 : // WRITE
573 : // ----------------------------------------------------------------------
574 :
575 :
576 : assign dec_tlu_error_wb = dec_tlu_br0_start_error_wb | dec_tlu_br0_error_wb;
577 :
578 : assign btb_error_addr_wb[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] = dec_tlu_br0_addr_wb[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO];
579 :
580 : assign dec_tlu_way_wb = dec_tlu_br0_way_wb;
581 :
582 : assign btb_valid = exu_mp_valid & ~dec_tlu_error_wb;
583 :
584 : assign btb_wr_tag[pt.BTB_BTAG_SIZE-1:0] = exu_mp_btag[pt.BTB_BTAG_SIZE-1:0];
585 :
586 : if(!pt.BTB_FULLYA) begin
587 :
588 : if(pt.BTB_BTAG_FOLD) begin : btbfold
589 : el2_btb_tag_hash_fold #(.pt(pt)) rdtagf (.hash(fetch_rd_tag_f[pt.BTB_BTAG_SIZE-1:0]),
590 : .pc({ifc_fetch_addr_f[pt.BTB_ADDR_HI+pt.BTB_BTAG_SIZE+pt.BTB_BTAG_SIZE:pt.BTB_ADDR_HI+1]}));
591 : el2_btb_tag_hash_fold #(.pt(pt)) rdtagp1f(.hash(fetch_rd_tag_p1_f[pt.BTB_BTAG_SIZE-1:0]),
592 : .pc({fetch_addr_p1_f[ pt.BTB_ADDR_HI+pt.BTB_BTAG_SIZE+pt.BTB_BTAG_SIZE:pt.BTB_ADDR_HI+1]}));
593 : end
594 : else begin : btbfold
595 : el2_btb_tag_hash #(.pt(pt)) rdtagf(.hash(fetch_rd_tag_f[pt.BTB_BTAG_SIZE-1:0]),
596 : .pc({ifc_fetch_addr_f[pt.BTB_ADDR_HI+pt.BTB_BTAG_SIZE+pt.BTB_BTAG_SIZE+pt.BTB_BTAG_SIZE:pt.BTB_ADDR_HI+1]}));
597 : el2_btb_tag_hash #(.pt(pt)) rdtagp1f(.hash(fetch_rd_tag_p1_f[pt.BTB_BTAG_SIZE-1:0]),
598 : .pc({fetch_addr_p1_f[pt.BTB_ADDR_HI+pt.BTB_BTAG_SIZE+pt.BTB_BTAG_SIZE+pt.BTB_BTAG_SIZE:pt.BTB_ADDR_HI+1]}));
599 : end
600 :
601 : assign btb_wr_en_way0 = ( ({{~exu_mp_way & exu_mp_valid_write & ~dec_tlu_error_wb}}) |
602 : ({{~dec_tlu_way_wb & dec_tlu_error_wb}}));
603 :
604 : assign btb_wr_en_way1 = ( ({{exu_mp_way & exu_mp_valid_write & ~dec_tlu_error_wb}}) |
605 : ({{dec_tlu_way_wb & dec_tlu_error_wb}}));
606 : assign btb_wr_addr[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] = dec_tlu_error_wb ? btb_error_addr_wb[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] : exu_mp_addr[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO];
607 :
608 :
609 : assign vwayhit_f[1:0] = ( ({2{fetch_start_f[0]}} & {wayhit_f[1:0]}) |
610 : ({2{fetch_start_f[1]}} & {wayhit_p1_f[0], wayhit_f[1]})) & {eoc_mask, 1'b1};
611 :
612 : end // if (!pt.BTB_FULLYA)
613 :
614 : assign btb_wr_data[BTB_DWIDTH-1:0] = {btb_wr_tag[pt.BTB_BTAG_SIZE-1:0], exu_mp_tgt[pt.BTB_TOFFSET_SIZE-1:0], exu_mp_pc4, exu_mp_boffset,
615 : exu_mp_call | exu_mp_ja, exu_mp_ret | exu_mp_ja, btb_valid} ;
616 :
617 : assign exu_mp_valid_write = exu_mp_valid & exu_mp_ataken & ~exu_mp_pkt.valid;
618 263972 : logic [1:0] bht_wr_data0, bht_wr_data2;
619 1652136 : logic [1:0] bht_wr_en0, bht_wr_en2;
620 :
621 : assign middle_of_bank = exu_mp_pc4 ^ exu_mp_boffset;
622 : assign bht_wr_en0[1:0] = {2{exu_mp_valid & ~exu_mp_call & ~exu_mp_ret & ~exu_mp_ja}} & {middle_of_bank, ~middle_of_bank};
623 : assign bht_wr_en2[1:0] = {2{dec_tlu_br0_v_wb}} & {dec_tlu_br0_middle_wb, ~dec_tlu_br0_middle_wb} ;
624 :
625 : // Experiments show this is the best priority scheme for same bank/index writes at the same time.
626 : assign bht_wr_data0[1:0] = exu_mp_hist[1:0]; // lowest priority
627 : assign bht_wr_data2[1:0] = dec_tlu_br0_hist_wb[1:0]; // highest priority
628 :
629 :
630 :
631 151813 : logic [pt.BHT_ADDR_HI:pt.BHT_ADDR_LO] bht_rd_addr_f, bht_rd_addr_p1_f, bht_wr_addr0, bht_wr_addr2;
632 :
633 151813 : logic [pt.BHT_ADDR_HI:pt.BHT_ADDR_LO] mp_hashed, br0_hashed_wb, bht_rd_addr_hashed_f, bht_rd_addr_hashed_p1_f;
634 : el2_btb_ghr_hash #(.pt(pt)) mpghrhs (.hashin(exu_mp_addr[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO]), .ghr(exu_mp_eghr[pt.BHT_GHR_SIZE-1:0]), .hash(mp_hashed[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO]));
635 : el2_btb_ghr_hash #(.pt(pt)) br0ghrhs (.hashin(dec_tlu_br0_addr_wb[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO]), .ghr(exu_i0_br_fghr_wb[pt.BHT_GHR_SIZE-1:0]), .hash(br0_hashed_wb[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO]));
636 : el2_btb_ghr_hash #(.pt(pt)) fghrhs (.hashin(btb_rd_addr_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO]), .ghr(fghr[pt.BHT_GHR_SIZE-1:0]), .hash(bht_rd_addr_hashed_f[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO]));
637 : el2_btb_ghr_hash #(.pt(pt)) fghrhs_p1 (.hashin(btb_rd_addr_p1_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO]), .ghr(fghr[pt.BHT_GHR_SIZE-1:0]), .hash(bht_rd_addr_hashed_p1_f[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO]));
638 :
639 : assign bht_wr_addr0[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO] = mp_hashed[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO];
640 : assign bht_wr_addr2[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO] = br0_hashed_wb[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO];
641 : assign bht_rd_addr_f[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO] = bht_rd_addr_hashed_f[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO];
642 : assign bht_rd_addr_p1_f[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO] = bht_rd_addr_hashed_p1_f[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO];
643 :
644 :
645 : // ----------------------------------------------------------------------
646 : // Structures. Using FLOPS
647 : // ----------------------------------------------------------------------
648 : // BTB
649 : // Entry -> tag[pt.BTB_BTAG_SIZE-1:0], toffset[11:0], pc4, boffset, call, ret, valid
650 :
651 : if(!pt.BTB_FULLYA) begin
652 :
653 : for (j=0 ; j<LRU_SIZE ; j++) begin : BTB_FLOPS
654 : // Way 0
655 : rvdffe #(17+pt.BTB_BTAG_SIZE) btb_bank0_way0 (.*,
656 : .en(((btb_wr_addr[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] == j) & btb_wr_en_way0)),
657 : .din (btb_wr_data[BTB_DWIDTH-1:0]),
658 : .dout (btb_bank0_rd_data_way0_out[j]));
659 :
660 : // Way 1
661 : rvdffe #(17+pt.BTB_BTAG_SIZE) btb_bank0_way1 (.*,
662 : .en(((btb_wr_addr[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] == j) & btb_wr_en_way1)),
663 : .din (btb_wr_data[BTB_DWIDTH-1:0]),
664 : .dout (btb_bank0_rd_data_way1_out[j]));
665 :
666 : end
667 :
668 :
669 339 : always_comb begin : BTB_rd_mux
670 339 : btb_bank0_rd_data_way0_f[BTB_DWIDTH-1:0] = '0 ;
671 339 : btb_bank0_rd_data_way1_f[BTB_DWIDTH-1:0] = '0 ;
672 339 : btb_bank0_rd_data_way0_p1_f[BTB_DWIDTH-1:0] = '0 ;
673 339 : btb_bank0_rd_data_way1_p1_f[BTB_DWIDTH-1:0] = '0 ;
674 :
675 339 : for (int j=0; j< LRU_SIZE; j++) begin
676 28151601 : if (btb_rd_addr_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] == (pt.BTB_ADDR_HI-pt.BTB_ADDR_LO+1)'(j)) begin
677 :
678 28151601 : btb_bank0_rd_data_way0_f[BTB_DWIDTH-1:0] = btb_bank0_rd_data_way0_out[j];
679 28151601 : btb_bank0_rd_data_way1_f[BTB_DWIDTH-1:0] = btb_bank0_rd_data_way1_out[j];
680 :
681 : end
682 : end
683 339 : for (int j=0; j< LRU_SIZE; j++) begin
684 28151601 : if (btb_rd_addr_p1_f[pt.BTB_ADDR_HI:pt.BTB_ADDR_LO] == (pt.BTB_ADDR_HI-pt.BTB_ADDR_LO+1)'(j)) begin
685 :
686 28151601 : btb_bank0_rd_data_way0_p1_f[BTB_DWIDTH-1:0] = btb_bank0_rd_data_way0_out[j];
687 28151601 : btb_bank0_rd_data_way1_p1_f[BTB_DWIDTH-1:0] = btb_bank0_rd_data_way1_out[j];
688 :
689 : end
690 : end
691 : end
692 : end // if (!pt.BTB_FULLYA)
693 :
694 :
695 :
696 :
697 :
698 : if(pt.BTB_FULLYA) begin : fa
699 :
700 : logic found1, hit0, hit1;
701 : logic btb_used_reset, write_used;
702 : logic [$clog2(pt.BTB_SIZE)-1:0] btb_fa_wr_addr0, hit0_index, hit1_index;
703 :
704 : logic [pt.BTB_SIZE-1:0] btb_tag_hit, btb_offset_0, btb_offset_1, btb_used_ns, btb_used,
705 : wr0_en, btb_upper_hit;
706 : logic [pt.BTB_SIZE-1:0][BTB_DWIDTH-1:0] btbdata;
707 :
708 : // Fully Associative tag hash uses bits 31:3. Bits 2:1 are the offset bits used for the 4 tag comp banks
709 : // Full tag used to speed up lookup. There is one 31:3 cmp per entry, and 4 2:1 cmps per entry.
710 :
711 : logic [FA_CMP_LOWER-1:1] ifc_fetch_addr_p1_f;
712 :
713 :
714 : assign ifc_fetch_addr_p1_f[FA_CMP_LOWER-1:1] = ifc_fetch_addr_f[FA_CMP_LOWER-1:1] + 1'b1;
715 :
716 : assign fetch_mp_collision_f = ( (exu_mp_btag[pt.BTB_BTAG_SIZE-1:0] == ifc_fetch_addr_f[31:1]) &
717 : exu_mp_valid & ifc_fetch_req_f & ~exu_mp_pkt.way);
718 : assign fetch_mp_collision_p1_f = ( (exu_mp_btag[pt.BTB_BTAG_SIZE-1:0] == {ifc_fetch_addr_f[31:FA_CMP_LOWER], ifc_fetch_addr_p1_f[FA_CMP_LOWER-1:1]}) &
719 : exu_mp_valid & ifc_fetch_req_f & ~exu_mp_pkt.way);
720 :
721 : always_comb begin
722 : btb_vbank0_rd_data_f = '0;
723 : btb_vbank1_rd_data_f = '0;
724 : // btb_tag_hit = '0;
725 : // btb_upper_hit = '0;
726 : // btb_offset_0 = '0;
727 : // btb_offset_1 = '0;
728 :
729 : found1 = 1'b0;
730 : hit0 = 1'b0;
731 : hit1 = 1'b0;
732 : hit0_index = '0;
733 : hit1_index = '0;
734 : btb_fa_wr_addr0 = '0;
735 :
736 : for(int i=0; i<pt.BTB_SIZE; i++) begin
737 : logic upper_hit, offset_0, offset_1;
738 :
739 : // Break the cmp into chunks for lower area.
740 : // Chunk1: FA 31:6 or 31:5 depending on icache line size
741 : // Chunk2: FA 5:1 or 4:1 depending on icache line size
742 : // btb_upper_hit[i] = (btbdata[i][BTB_DWIDTH_TOP:FA_TAG_END_UPPER] == ifc_fetch_addr_f[31:FA_CMP_LOWER]) & btbdata[i][0] & ~wr0_en[i];
743 : // btb_offset_0[i] = (btbdata[i][FA_TAG_START_LOWER:FA_TAG_END_LOWER] == ifc_fetch_addr_f[FA_CMP_LOWER-1:1]) & btb_upper_hit[i];
744 : // btb_offset_1[i] = (btbdata[i][FA_TAG_START_LOWER:FA_TAG_END_LOWER] == ifc_fetch_addr_p1_f[FA_CMP_LOWER-1:1]) & btb_upper_hit[i];
745 :
746 : upper_hit = (btbdata[i][BTB_DWIDTH_TOP:FA_TAG_END_UPPER] == ifc_fetch_addr_f[31:FA_CMP_LOWER]) & btbdata[i][0] & ~wr0_en[i];
747 : offset_0 = (btbdata[i][FA_TAG_START_LOWER:FA_TAG_END_LOWER] == ifc_fetch_addr_f[FA_CMP_LOWER-1:1]) & upper_hit;
748 : offset_1 = (btbdata[i][FA_TAG_START_LOWER:FA_TAG_END_LOWER] == ifc_fetch_addr_p1_f[FA_CMP_LOWER-1:1]) & upper_hit;
749 :
750 : if(~hit0) begin
751 : if(offset_0) begin
752 : hit0_index[BTB_FA_INDEX:0] = (BTB_FA_INDEX+1)'(i);
753 : // hit unless we are also writing this entry at the same time
754 : hit0 = 1'b1;
755 : end
756 : end
757 : if(~hit1) begin
758 : if(offset_1) begin
759 : hit1_index[BTB_FA_INDEX:0] = (BTB_FA_INDEX+1)'(i);
760 : hit1 = 1'b1;
761 : end
762 : end
763 :
764 :
765 : // Mux out the 2 potential branches
766 : if(offset_0)
767 : btb_vbank0_rd_data_f[BTB_DWIDTH-1:0] = fetch_mp_collision_f ? btb_wr_data : btbdata[i];
768 : if(offset_1)
769 : btb_vbank1_rd_data_f[BTB_DWIDTH-1:0] = fetch_mp_collision_p1_f ? btb_wr_data : btbdata[i];
770 :
771 : // find the first zero from bit zero in the used vector, this is the write address
772 : if(~found1 & ((exu_mp_valid_write & ~exu_mp_pkt.way) | dec_tlu_error_wb)) begin
773 : if(~btb_used[i]) begin
774 : btb_fa_wr_addr0[BTB_FA_INDEX:0] = i[BTB_FA_INDEX:0];
775 : found1 = 1'b1;
776 : end
777 : end
778 : end
779 : end // always_comb begin
780 :
781 : //`ifdef RV_ASSERT_ON
782 : // btbhitonehot0: assert #0 ($onehot0(btb_offset_0));
783 : // btbhitonehot1: assert #0 ($onehot0(btb_offset_1));
784 : //`endif
785 :
786 : assign vwayhit_f[1:0] = {hit1, hit0} & {eoc_mask, 1'b1};
787 :
788 : // way bit is reused as the predicted bit
789 : assign way_raw[1:0] = vwayhit_f[1:0] | {fetch_mp_collision_p1_f, fetch_mp_collision_f};
790 :
791 : for (j=0 ; j<pt.BTB_SIZE ; j++) begin : BTB_FAFLOPS
792 :
793 : assign wr0_en[j] = ((btb_fa_wr_addr0[BTB_FA_INDEX:0] == j) & (exu_mp_valid_write & ~exu_mp_pkt.way)) |
794 : ((dec_fa_error_index == j) & dec_tlu_error_wb);
795 :
796 : rvdffe #(BTB_DWIDTH) btb_fa (.*, .clk(clk),
797 : .en (wr0_en[j]),
798 : .din (btb_wr_data[BTB_DWIDTH-1:0]),
799 : .dout(btbdata[j]));
800 : end // block: BTB_FAFLOPS
801 :
802 : assign ifu_bp_fa_index_f[1] = hit1 ? hit1_index : '0;
803 : assign ifu_bp_fa_index_f[0] = hit0 ? hit0_index : '0;
804 :
805 : assign btb_used_reset = &btb_used[pt.BTB_SIZE-1:0];
806 : assign btb_used_ns[pt.BTB_SIZE-1:0] = ({pt.BTB_SIZE{vwayhit_f[1]}} & (32'b1 << hit1_index[BTB_FA_INDEX:0])) |
807 : ({pt.BTB_SIZE{vwayhit_f[0]}} & (32'b1 << hit0_index[BTB_FA_INDEX:0])) |
808 : ({pt.BTB_SIZE{exu_mp_valid_write & ~exu_mp_pkt.way & ~dec_tlu_error_wb}} & (32'b1 << btb_fa_wr_addr0[BTB_FA_INDEX:0])) |
809 : ({pt.BTB_SIZE{btb_used_reset}} & {pt.BTB_SIZE{1'b0}}) |
810 : ({pt.BTB_SIZE{~btb_used_reset & dec_tlu_error_wb}} & (btb_used[pt.BTB_SIZE-1:0] & ~(32'b1 << dec_fa_error_index[BTB_FA_INDEX:0]))) |
811 : (~{pt.BTB_SIZE{btb_used_reset | dec_tlu_error_wb}} & btb_used[pt.BTB_SIZE-1:0]);
812 :
813 : assign write_used = btb_used_reset | ifu_bp_hit_taken_f | exu_mp_valid_write | dec_tlu_error_wb;
814 :
815 :
816 : rvdffe #(pt.BTB_SIZE) btb_usedf (.*, .clk(clk),
817 : .en (write_used),
818 : .din (btb_used_ns[pt.BTB_SIZE-1:0]),
819 : .dout(btb_used[pt.BTB_SIZE-1:0]));
820 :
821 : end // block: fa
822 :
823 :
824 : //-----------------------------------------------------------------------------
825 : // BHT
826 : // 2 bit Entry -> direction, strength
827 : //
828 : //-----------------------------------------------------------------------------
829 :
830 : // logic [1:0] [(pt.BHT_ARRAY_DEPTH/NUM_BHT_LOOP)-1:0][NUM_BHT_LOOP-1:0][1:0] bht_bank_wr_data ;
831 : logic [1:0] [pt.BHT_ARRAY_DEPTH-1:0] [1:0] bht_bank_rd_data_out ;
832 11518 : logic [1:0] [(pt.BHT_ARRAY_DEPTH/NUM_BHT_LOOP)-1:0] bht_bank_clken ;
833 0 : logic [1:0] [(pt.BHT_ARRAY_DEPTH/NUM_BHT_LOOP)-1:0] bht_bank_clk ;
834 : // logic [1:0] [(pt.BHT_ARRAY_DEPTH/NUM_BHT_LOOP)-1:0][NUM_BHT_LOOP-1:0] bht_bank_sel ;
835 :
836 : for ( i=0; i<2; i++) begin : BANKS
837 : wire[pt.BHT_ARRAY_DEPTH-1:0] wr0, wr1;
838 : assign wr0 = pt.BHT_ARRAY_DEPTH'(bht_wr_en0[i] << bht_wr_addr0);
839 : assign wr1 = pt.BHT_ARRAY_DEPTH'(bht_wr_en2[i] << bht_wr_addr2);
840 : for (genvar k=0 ; k < (pt.BHT_ARRAY_DEPTH)/NUM_BHT_LOOP ; k++) begin : BHT_CLK_GROUP
841 : assign bht_bank_clken[i][k] = (bht_wr_en0[i] & ((bht_wr_addr0[pt.BHT_ADDR_HI: NUM_BHT_LOOP_OUTER_LO]==k) | BHT_NO_ADDR_MATCH)) |
842 : (bht_wr_en2[i] & ((bht_wr_addr2[pt.BHT_ADDR_HI: NUM_BHT_LOOP_OUTER_LO]==k) | BHT_NO_ADDR_MATCH));
843 : `ifndef RV_FPGA_OPTIMIZE
844 : rvclkhdr bht_bank_grp_cgc ( .en(bht_bank_clken[i][k]), .l1clk(bht_bank_clk[i][k]), .* ); // ifndef RV_FPGA_OPTIMIZE
845 : `endif
846 :
847 : for (j=0 ; j<NUM_BHT_LOOP ; j++) begin : BHT_FLOPS
848 : wire[1:0] wdata;
849 : wire bank_sel = wr1[NUM_BHT_LOOP*k+j] | wr0[NUM_BHT_LOOP*k+j];
850 :
851 : // assign bht_bank_sel[i][k][j] = (bht_wr_en0[i] & (bht_wr_addr0[NUM_BHT_LOOP_INNER_HI :pt.BHT_ADDR_LO] == j) & ((bht_wr_addr0[pt.BHT_ADDR_HI: NUM_BHT_LOOP_OUTER_LO]==k) | BHT_NO_ADDR_MATCH)) |
852 : // (bht_wr_en2[i] & (bht_wr_addr2[NUM_BHT_LOOP_INNER_HI :pt.BHT_ADDR_LO] == j) & ((bht_wr_addr2[pt.BHT_ADDR_HI: NUM_BHT_LOOP_OUTER_LO]==k) | BHT_NO_ADDR_MATCH)) ;
853 :
854 : // assign bht_bank_wr_data[i][k][j] = (bht_wr_en2[i] & (bht_wr_addr2[NUM_BHT_LOOP_INNER_HI:pt.BHT_ADDR_LO] == j) & ((bht_wr_addr2[pt.BHT_ADDR_HI: NUM_BHT_LOOP_OUTER_LO]==k) | BHT_NO_ADDR_MATCH)) ? bht_wr_data2[1:0] :
855 : // bht_wr_data0[1:0] ;
856 : assign wdata = wr1[NUM_BHT_LOOP*k+j] ? bht_wr_data2[1:0] :bht_wr_data0;
857 :
858 :
859 :
860 : rvdffs_fpga #(2) bht_bank (.*,
861 : .clk (bht_bank_clk[i][k]),
862 : .en (bank_sel),
863 : .rawclk (clk),
864 : .clken (bank_sel),
865 : .din (wdata),
866 : .dout (bht_bank_rd_data_out[i][(16*k)+j]));
867 :
868 : end // block: BHT_FLOPS
869 : end // block: BHT_CLK_GROUP
870 : end // block: BANKS
871 :
872 339 : always_comb begin : BHT_rd_mux
873 339 : bht_bank0_rd_data_f[1:0] = '0 ;
874 339 : bht_bank1_rd_data_f[1:0] = '0 ;
875 339 : bht_bank0_rd_data_p1_f[1:0] = '0 ;
876 339 : for (int j=0; j< pt.BHT_ARRAY_DEPTH; j++) begin
877 28151601 : if (bht_rd_addr_f[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO] == (pt.BHT_ADDR_HI-pt.BHT_ADDR_LO+1)'(j)) begin
878 28151601 : bht_bank0_rd_data_f[1:0] = bht_bank_rd_data_out[0][j];
879 28151601 : bht_bank1_rd_data_f[1:0] = bht_bank_rd_data_out[1][j];
880 : end
881 28151601 : if (bht_rd_addr_p1_f[pt.BHT_ADDR_HI:pt.BHT_ADDR_LO] == (pt.BHT_ADDR_HI-pt.BHT_ADDR_LO+1)'(j)) begin
882 28151601 : bht_bank0_rd_data_p1_f[1:0] = bht_bank_rd_data_out[0][j];
883 : end
884 : end
885 : end // block: BHT_rd_mux
886 :
887 :
888 339 : function [1:0] countones;
889 : input [1:0] valid;
890 :
891 339 : begin
892 :
893 339 : countones[1:0] = {1'b0, valid[1]} +
894 339 : {1'b0, valid[0]};
895 : end
896 : endfunction
897 : endmodule // el2_ifu_bp_ctl
898 :
|